Gradient estimates for the strong $p(x)$-Laplace equation
نویسندگان
چکیده
منابع مشابه
Gradient estimates for the Perona-Malik equation
We consider the Cauchy problem for the Perona-Malik equation ut = div ( ∇u 1 + |∇u|2 ) in a bounded open set Ω ⊆ R, with Neumann boundary conditions. If n = 1, we prove some a priori estimates on u and ux. Then we consider the semi-discrete scheme obtained by replacing the space derivatives by finite differences. Extending the previous estimates to the discrete setting we prove a compactness re...
متن کاملGradient estimates for the Fisher–KPP equation on Riemannian manifolds
*Correspondence: [email protected] Department of Applied Mathematics, College of Science, China Agricultural University, Beijing, P.R. China Abstract In this paper, we consider positive solutions to the Fisher–KPP equation on complete Riemannian manifolds. We derive the gradient estimate. Using the estimate, we get the classic Harnack inequality which extends the recent result of Cao, Liu, Pendle...
متن کاملSome Gradient Estimates for the Heat Equation on Domains and for an Equation by Perelman
In the first part, we derive a sharp gradient estimate for the log of Dirichlet heat kernel and Poisson heat kernel on domains, and a sharpened local Li-Yau gradient estimate. In the second part, without explicit curvature assumptions, we prove a global upper bound for the fundamental solution of an equation introduced by G. Perelman, i.e. the heat equation of the conformal Laplacian under back...
متن کاملGradient estimates for a nonlinear parabolic equation under Ricci flow
Let (M,g(t)), 0 ≤ t ≤ T , be a n-dimensional complete noncompact manifold, n ≥ 2, with bounded curvatures and metric g(t) evolving by the Ricci flow ∂gij ∂t = −2Rij . We will extend the result of L. Ma and Y. Yang and prove a local gradient estimate for positive solutions of the nonlinear parabolic equation ∂u ∂t = ∆u − au log u − qu where a ∈ R is a constant and q is a smooth function on M × [...
متن کاملGradient Estimates for a Nonlinear Parabolic Equation on Riemannian Manifolds
Let (M, g) be a complete noncompact Riemannian manifold. In this paper, we derive a local gradient estimate for positive solutions to a simple nonlinear parabolic equation ∂u ∂t = ∆u+ au log u+ bu on M × [0,+∞), where a, b are two real constants. This equation is closely related to the gradient Ricci soliton. We extend the result of L. Ma (Journal of Functional Analysis 241 (2006) 374-382).
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Discrete and Continuous Dynamical Systems
سال: 2017
ISSN: 1078-0947
DOI: 10.3934/dcds.2017175